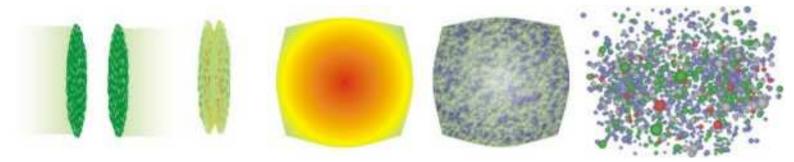
Transport in QCD: a Theorist's Perspective

Guy Moore, TU Darmstadt

- ullet HIC, v_2 and flow: unnecessary review
- Hydrodynamics and derivative expansion
- Meaning of shear, bulk viscosity, quark diffusion etc.
- Perturbation theory: strengths and weaknesses
- N = 4 **SYM**: strengths and weaknesses
- Lattice: strengths and weaknesses

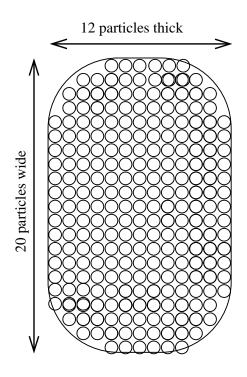
LHC collides lead nuclei (82p + 126n = 208 nucleons)



leading to 3200 charged, > 1600 neutral particles between $\theta = 40^{\circ}$ and $\theta = 140^{\circ}$ (-1 < η < 1)

Each n,p gets "torn open," spilling out many g,q,\bar{q} inside

Hot ball of 5000 excitations

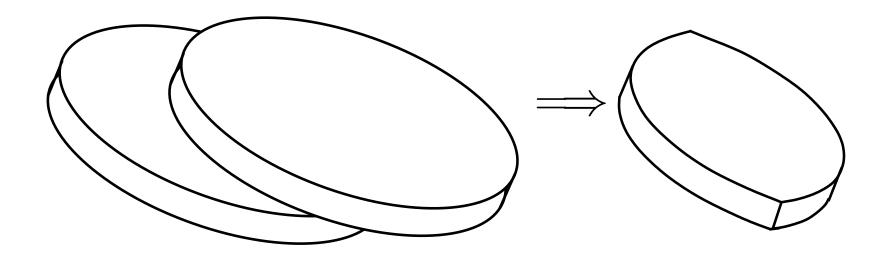


5000 excitations is around $20 \times 20 \times 12$ across. Enough to show collective or "fluid" behavior?

Hydrodynamics: Many "subsystems" big enough for local equilibration in each (Different regions with different $T, \vec{v},...$). Not obvious but plausible

Testing for local equilibration

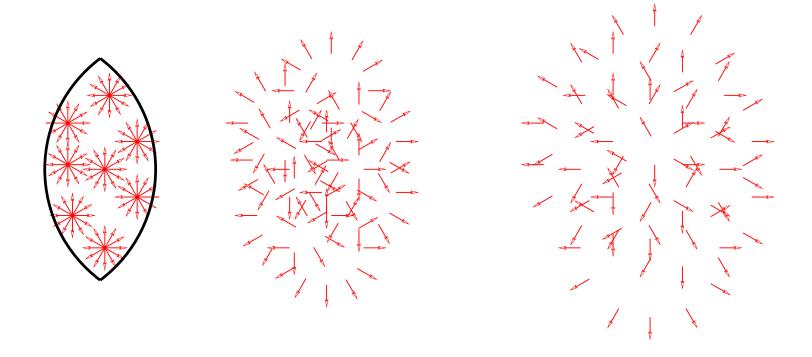
Nuclei generically strike off-center



leading to irregular shaped region of plasma

"Almond sliver" with long axis, short axis, and very short initial thickness along beam direction.

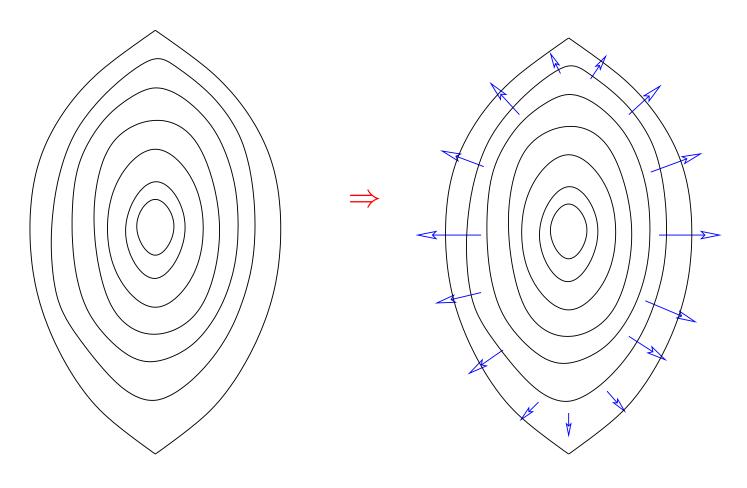
Behavior IF no re-interactions (transparency)



Just fly out and hit the detector.

Detector will see xy plane isotropy

local CM motions



Pressure contours Expansion pattern
Anisotropy leads to anisotropic (local CM motion) flow.

Free particle propagation:

- System-average CM flow velocities $\langle v_{x,\mathrm{CM}}^2 \rangle > \langle v_{y,\mathrm{CM}}^2 \rangle$
- \bullet Must have local CM $\langle p_x^2\rangle < \langle p_y^2\rangle$ so total $\langle p_x^2\rangle = \langle p_y^2\rangle$

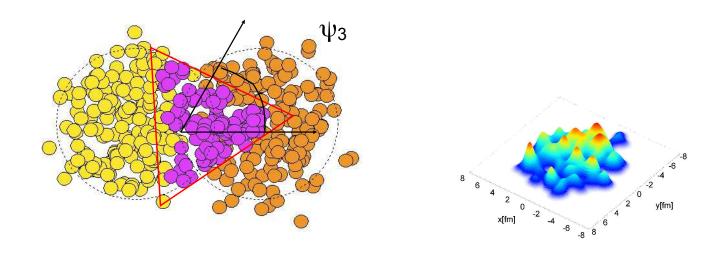
Efficient re-interaction:

- \bullet System-average CM flow still has $\langle v_{x,{\rm CM}}^2\rangle > \langle v_{y,{\rm CM}}^2\rangle$
- system changes locally towards $\langle T^{xx}_{\rm local\ CM} \rangle = \langle T^{yy}_{\rm local\ CM} \rangle$
- Adding these together, $\langle T^{xx}_{\rm tot,labframe} \rangle > \langle T^{yy}_{\rm tot,labframe} \rangle$

Net "Elliptic Flow"
$$v_2 \equiv \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2}$$
 measures re-interaction

Higher harmonics

Nucleus is nucleons – clumpy substructure



Leads to fluctuating higher v_n moments. Amplitudes related. Higher n—shorter distance, more easily erased. Allows to measure what scales get "smeared" by streaming and which survive; sensitive probe of strength of re-interaction.

Perfect Rescattering: Ideal Hydrodynamics

System in local equilibrium. List all conserved quantities:

$$E, \quad \vec{p}, \quad Q_{\rm el}, \quad B \text{ [baryon number]}$$

Define local densities e, π , ρ , n, space varying. Local properties fixed by Equation of State:

$$-\Omega=P=P(e,\pi,
ho,n)$$
 Only conserved quantities determine equilibrium.

Use Ω , thermodynamics to find conserved currents:

$$T^{\mu
u}, \quad J^{\mu}_{\scriptscriptstyle Q}, \quad J^{\mu}_{\scriptscriptstyle
m B}$$

Current conservation equations: 1 condition per unknown.

BNL, 13 September 2016: Page 9 of 39

Ideal Hydrodynamics

Relativity: write $(e,\pi)=\frac{\varepsilon}{\sqrt{1-v^2/c^2}}(u^0,\vec{u})$: u^μ flow 4-vector, $u^0-\frac{1}{\sqrt{1-v^2/c^2}}$

$$u^0 = \frac{1}{\sqrt{1 - v^2/c^2}}, \ \vec{u} = \frac{\vec{v}/c}{\sqrt{1 - v^2/c^2}}$$

At rest, $T_{00} = \varepsilon$ and $T_{ij} = P\delta_{ij}$. Relativity:

$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}$$

with $g^{\mu\nu}$ the metric tensor. Conservation:

$$\nabla_{\mu}T^{\mu\nu} = 0$$

small \vec{v}/c : turns into usual Euler fluid eq.

Nonideal Hydro

Each region feels information about neighboring regions diffusing across its boundary.

 \vec{v} nonuniformity means nonvanishing $\nabla_i v_j$ which will influence center region (diffusion of information)

N	N	A
X	X	A
	X	X

Decompose: scalar, antisymm, traceless symm tensor

$$\nabla_i v_j = \frac{\delta_{ij}}{3} \nabla \cdot v + \frac{1}{2} (\nabla_i v_j - \nabla_j v_i) + \frac{1}{2} \left(\nabla_i v_j + \nabla_j v_i - \frac{2\delta_{ij}}{3} \nabla \cdot v \right)$$

BNL, 13 September 2016: Page 11 of 39

What each tensor piece means

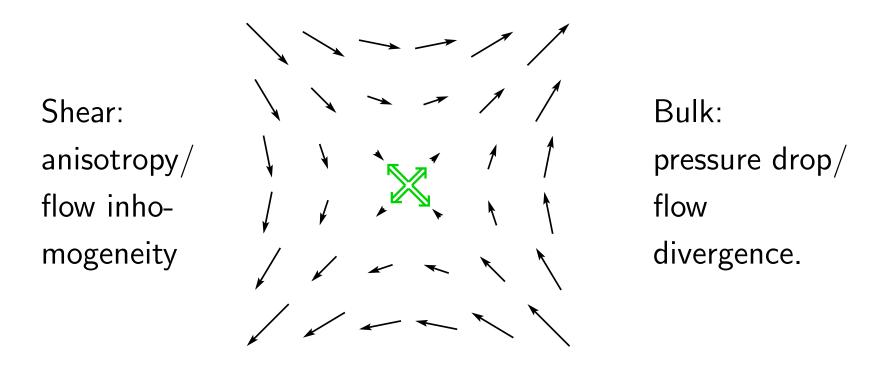
scalar divergence can change scalar pressure $P\Rightarrow P_{\rm equil.}-\zeta\nabla\cdot v$ symm. tensor shear flow can change symm. tensor stress tensor $T_{ij}\Rightarrow T_{ij,{\rm equil.}}-\eta(\nabla_i v_j+\nabla_j v_i-..)$

pseudovector vorticity cannot change either

Nonideal Hydro: Viscosity

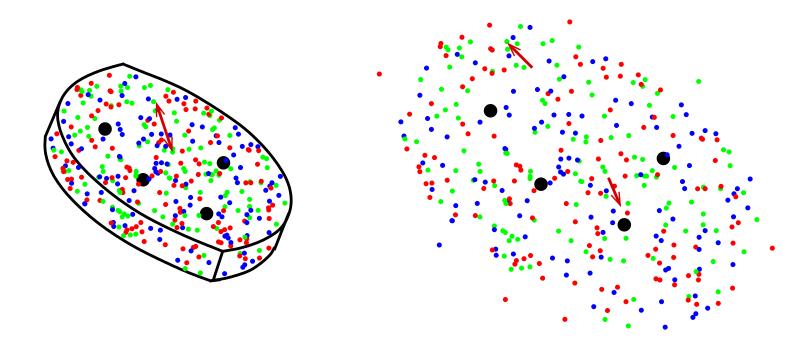
Write $T^{\mu\nu}$ to first order in gradients:

$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} - \eta\sigma^{\mu\nu} - \zeta\nabla \cdot u(g^{\mu\nu} + u^{\mu}u^{\nu})$$



BNL, 13 September 2016: Page 13 of 39

Other transport coefficients



Collision makes **Heavy Quarks** and **Hard Partons**.

Each is buffeted by medium as emerges.

Quarks: slow moving, $v \simeq 0$. Partons: v = 1.

Momentum diffusion for v = 0 and v = 1 (?)

General approach: Kubo relation

Relativity: I can create shear flow $\nabla_i u_j$ by shearing my geometry $\partial_t h_{ij}!$

Instantaneous effect: $T^{ij} = Ph^{ij}$, P the pressure

Total effect: $T^{ij} \sim P \tau \partial_t h^{ij}$; τ some averaged relax. rate

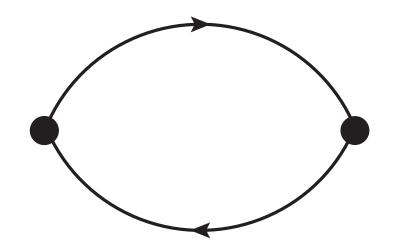
Kubo: thermal fluctuations in T^{ij} . Find τ by seeing how they relax. Result:

$$\eta = \frac{1}{2T} \int d^4x \langle T^{xy}(x) T^{xy}(0) \rangle$$

Starting point of most calculations.

Perturbative treatment

High temperature (hopefully achieved?): $\alpha_{\rm s}$ small?

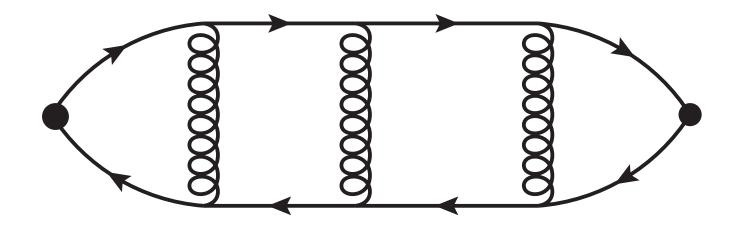


 $\langle T^{xy}T^{xy}\rangle$ 2-propagators Each $1/(p^2+\Pi(p))$, $\Pi\sim g^2T^2 \text{ with Re, Im}$ parts.

Dominant: $p^2 \simeq 0$, result $\propto 1/\mathrm{Im}\Pi$. Quasiparticles! Implies $\eta \sim T^3/g^2$ – inverse powers of g.

Ladders!

Add rungs: More on-shell pairs

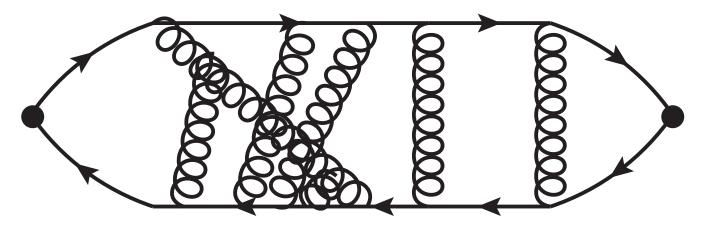


n-rung ladder $\simeq (1-g^2) \times$ (n-1)-rung ladder.

Need $\mathcal{O}(1/g^2)$ diagrams: $\eta \sim T^3/g^4$

More ladders!

Collinear physics requires including still-uglier graphs



Resummation a challenge but solved in 2002-3 Arnold GM Yaffe

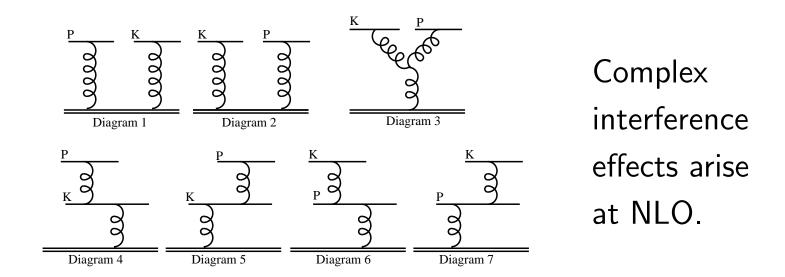
 $\mathsf{hep\text{-}ph}/0302165$

Similar story for bulk viscosity Arnold Dogan Moore hep-ph/0608012

All this to get leading-order behavior!!

Next-to-leading order?

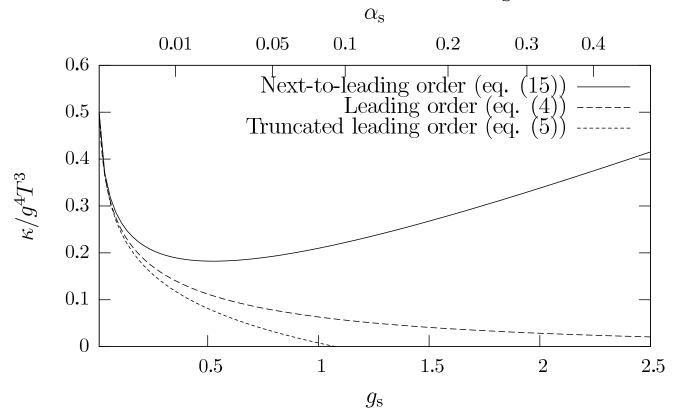
Perturbative series can surprise you (ϵ -expansion) Know convergence only by finding a few terms. Discussion so far was just for leading-order!



Resummed for heavy-quarks in 2007, shear in 2016

Heavy Quark Diffusion at NLO

Diffusion at LO and NLO as function of α_s :

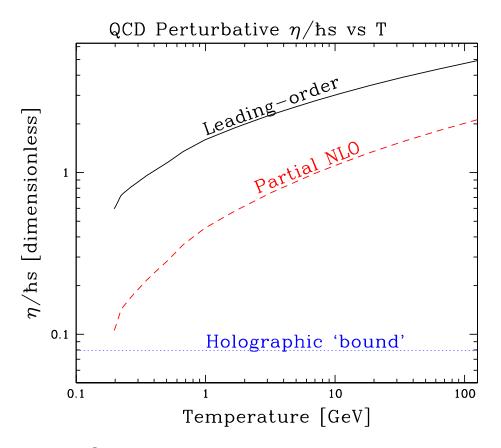


Perturbative expansion a total disaster! Caron-Huot GM arXiv:0801.2173

Shear viscosity at NLO

Recently completed (unpublished) almost-NLO treatment

Express as dimensionless ratio η/s : LO vs NLO



Very large downward NLO corrections.

Perturbation Theory: Summary

Positives:

- Really solving QCD
- Familiar methodology, physical interpretation

Negatives:

- ullet Physically relevant T-range far out of reach
- Not much more than informed estimate
- ullet Probably QCD at $T\sim 200 {\rm MeV}$ is not Quasiparticles.

SYM approach

 $\mathcal{N}=4\mathrm{SYM}$ is a theory similar to QCD:

- Gauge group SU(N) (though keep $N\gg 1$)
- 4 Weyl $\simeq 2$ Dirac fermions (though in adjoint rep)
- 6 real adjoint scalars (That's new)
- Certain Yukawa and scalar self-couplings (Also new)

So not quite QCD, but at least SU(N) with fermions

Solving the theory

Holographic method: theory = Type-IIB strings. Simplify:

- ullet many colors $N\gg 1 o ext{ supergravity limit}$
- ullet strong coupling $g^2N\equiv\lambda\gg 1$ \to classical limit

Solve classical gravity in $AdS^5 \times S^5$; SYM is boundary. $g^2N \gg 1$ possible because theory is conformal. No confinement or asymptotic freedom.

Results (not mine)

"specific" shear viscosity takes universal value

$$\frac{\eta}{\hbar s} = \frac{1}{4\pi}$$

Kovtun Son Starinets hep-th/0405231 (Water at STP has $\eta/\hbar s=33$)

First corrections: $\mathcal{O}(\lambda^{-3/2})$,

100% for $\lambda=8$ Buchel Liu Starinets hep-th/0406264

Heavy quark diffusion is

$$D = \frac{2}{\pi T \sqrt{\lambda}}$$
 Casalderrey-Solana Teaney hep-ph/0605199

Explicit leftover dependence on λ .

BNL, 13 September 2016: Page 25 of 39

SYM: Summary

Positives:

- Solvable at strong coupling!
- ullet Shows η/s can be small, Quasiparticles need not exist

Negatives:

- Wrong theory. Uncontrolled systematic error
- \bullet "realistic" coupling $\lambda \sim 10$ not under theoretical control

Lattice

Lattice QCD gives method to take (Euclidean) path integral

$$Z = \int \mathcal{D}A_{\mu} \exp\left(-\int_0^{\beta} \int d^3x \frac{1}{2g^2} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu}\right)$$

or really, correlation functions

$$\langle T(y)T(0)\rangle = \frac{1}{Z} \int \mathcal{D}A_{\mu} \exp\left(\ldots\right) T(y)T(0)$$

But note, y, 0 at same time or differ by *imaginary* time.

What good does that do?

Where lattice is great

Zero-temperature masses:

$$\langle \hat{\pi}(x)\hat{\pi}(0)\rangle = Ce^{-xm_{\pi}}$$

exponential falloff of interpolating-operator correlator.

Thermodynamics:

$$\langle T_{\mu}^{\mu} \rangle$$
 or $\langle T_{ii} \rangle$

allow to reconstruct equation of state.

Nowadays, physical m_q , small statistical, syst. errors.

Transport coefficients?

Shear viscosity defined as:

$$\eta = \frac{1}{2T} \int d^3x dt \langle T_{xy}(x,t) T_{xy}(0,0) \rangle$$

What I can compute is

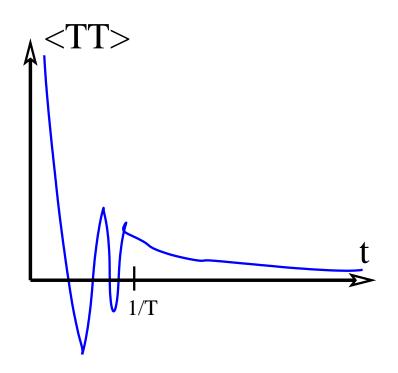
$$G(\tau) = \frac{1}{2T} \int d^3x \langle T_{xy}(x, i\tau) T_{xy}(0, 0) \rangle \qquad \text{for} \quad \tau \in [0, 1/T].$$

Related but not the same.

To get from one to other, use analytic structure of $\langle TT \rangle$

Spectral function

Consider time-structure of $\int d^3x \langle T(x,t)T(0,0)\rangle$:



Small-*t*: vacuum stuff.

Large-t: thermal decay.

Thermal part relevant.

Capture structure with spectral function

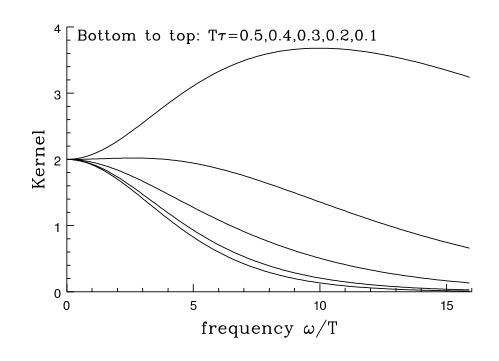
$$\rho(\omega) = \int d^3x \int dt e^{i\omega t} \langle \left[T(x,t), T(0,0) \right] \rangle$$

Spectral function vs $G(\tau)$

Analytic relation between $t, \tau = it$ gives:

$$G(\tau) = \int \frac{d\omega}{2\pi} \frac{\rho(\omega)}{\omega} K(\omega, \tau), \qquad K(\omega, \tau) = \frac{\omega \cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)}$$

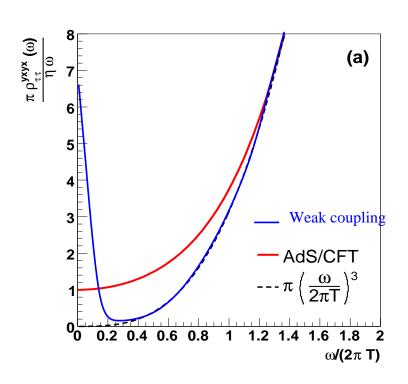
Here is $K(\omega, \tau)$ as function of ω for several τ .

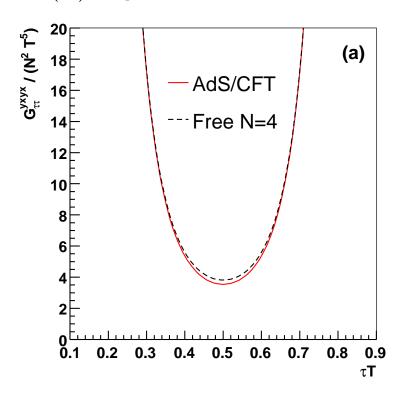


BNL, 13 September 2016: Page 31 of 39

The danger:

Weak-coupling vs Strong: ρ left, $G(\tau)$ right





Huge changes near $\omega=0$ (viscosity) from tiny changes in $G(\tau)$. Teaney hep-ph/0602044

Reconstructing ρ

General info is OK, but structure near $\omega = 0$ (shear!) very hard to get right.

Most fitting methods effectively assume there is not a sharp structure near $\omega = 0$.

Doomed to find small η/s .

More analytical info about large- ω would help. Generally reconstruction is fraught.

Lattice: summary

Positive:

- Right theory
- Nonperturbative info at strong coupling

Negative:

- Most results in quenched approx (pure-glue. Wrong theory)
- Systematic error to reconstruct η is large
- Systematic error may be *under-reported*.

Ways forward for theory?

Getting η/s for true QCD at interesting temperature will be tough. Not yet a clear approach with small errors.

But there are other questions to ask!

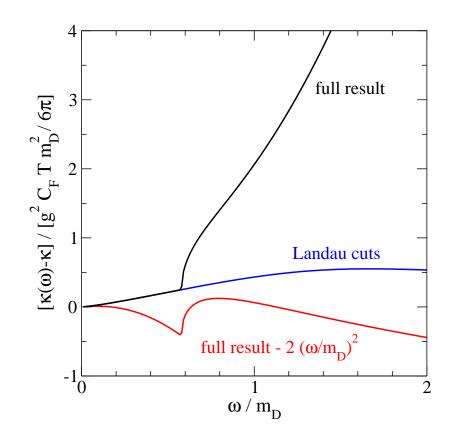
- Heavy quark diffusion: different lattice approach may have much better systematic issues!
- High-energy quark momentum diffusion: dimensional reduction approach

Heavy quarks from the Lattice

Integrate out heavy quark: momentum diffusion from Force-force correlator, $g^2\int dt \langle \vec{E}(0,t)\vec{E}(0,0)\rangle$ Caron-Huot Laine GM

arXiv:0901.1195

Continuation to $E(\tau)E(0)$ on Polyakov loop. Weak coupling predicts **no peak** in $\rho(\omega)$. So continuation much safer.



BNL, 13 September 2016: Page 36 of 39

Hard-particle transverse momentum exchange

Jet modification probably controlled by hard-particle q_{\perp} exchange with medium:

$$\frac{d\Gamma}{dt} \equiv \int \frac{d^2 q_{\perp}}{(2\pi)^2} C(q_{\perp})$$

 $C(q_{\perp})$ chance per- d^2q_{\perp} -per-t to exchange q_{\perp} momentum with medium.

Perturbative estimates, as usual.

NLO corrections large, as usual.

Can we get this from the lattice?

$C(q_{\perp})$ from the lattice

If $T\gg T_c$ (maybe 2-3×??), Dimensional Reduction works Short-distance physics is perturbative Long-distance physics nonperturbative but described by 3D EFT: EQCD. Lattice treatment easy

Result Caron-Huot arXiv:0811.1603: $C(q_{\perp})$ in terms of a "twisted" Wilson loop in EQCD.

Lattice implementation easy but fails without lattice improvement, now worked out D'Onofrio Kurkela GM arXiv:1401.7951

Numerical results to follow

BNL, 13 September 2016: Page 38 of 39

Conclusions

- We need theory estimates of transport coefficients!
- Viscosity from Perturbation Theory: poor convergence
- Viscosity from SYM: big systematics (wrong theory)
- Viscosity from Lattice: big systematics (continuation)
- Heavy quarks from Lattice: looks hopeful!
- $C(q_{\perp})$ from lattice: also hopeful!